Journal of Neurosurgery

Intraoperative neurophysiological monitoring during resection of infratentorial lesions: the surgeon’s view



Methods of choice for neurophysiological intraoperative monitoring (IOM) within the infratentorial compartment mostly include early brainstem auditory evoked potentials, free-running electromyography, and direct cranial nerve (CN) stimulation. Long-tract monitoring with somatosensory evoked potentials (SEPs) and motor evoked potentials (MEPs) is rarely used. This study investigated the incidence of IOM alterations during posterior fossa surgery stratified for lesion location.


Standardized CN and SEP/MEP IOM was performed in 305 patients being treated for various posterior fossa pathologies. The IOM data were correlated with lesion locations and histopathological types as well as other possible confounding factors.


Alterations in IOM were observed in 158 of 305 cases (51.8%) (CN IOM alterations in 130 of 305 [42.6%], SEP/MEP IOM alterations in 43 of 305 [14.0%]). In 15 cases (4.9%), simultaneous changes in long tracts and CNs were observed. The IOM alterations were followed by neurological sequelae in 98 of 305 cases (32.1%); 62% of IOM alterations resulted in neurological deficits. Sensitivity and specificity for detection of CN deficits were 98% and 77%, respectively, and 95% and 85%, respectively, for long-tract deficits. Regarding location, brainstem and petroclival lesions were closely associated with concurrent CN IOM and SEP/MEP alterations.


The incidence of IOM alterations during surgery in the posterior fossa varied widely between different lesion locations and histopathological types. This analysis provides crucial information on the necessity of IOM in different surgical settings. Because MEP/SEP and CN IOM alterations were commonly observed during posterior fossa surgery, the authors recommend the simultaneous use of both modalities based on lesion location.